

Photogrammetry II Lecture 4: Camera Calibration

Dr. Eng. Hassan Mohamed Hassan <u>Hassan.hussein@feng.bu.edu.eg</u> Geomatics Department

What you learn from this lecture

- 1. What are intrinsic parameters of the camera?
- 2. What is the camera matrix? (intrinsic + extrinsic)
- 3. How to obtain camera matrix by minimizing error
- 4. How to obtain intrinsic parameters from camera matrix

Estimate Depth Using a Stereo Camera

Measure Planar Objects

Estimate 3-D Structure from Camera Motion

Remove Lens Distortion

The Purpose of Calibration

- Intrinsic parameters: relate the camera's coordinate to the idealized coordinate system.
- Determine the IOP of camera: Focal length (f), The principal point co-ordinates (Xo, Yo), Lens distortion parameters
- Extrinsic parameters: related the camera's coordinate to a fixed world coordinate system and specify its position and orientation

in space.

Canon EOS 500D (28 mm)	Camera type: Pixel size (mm): Focal length (mm):			Frame			
415 images, 4752x3168 pix				0.00476651 × 0			0.00476651
				28	28		
	Initial	Adjusted	GPS/INS Offset				
	Type:		Auto 👻		(1000)	Fix calibration	
	f: 587	5874.32					
	cx: 0			ь1: 0			
	cy: 0				b2: 0		
	k1: 0 k2: 0				p1: 0		
					p2: 0		
	k3: 0				p3: 0		
	k4: 0		p4: 0				
	Camera lâbel Resolutio			Camera	model	Focal length	Date & time
	IMG_0083.JPG		4752x3168	Canon E	OS 500D	28	2011:05:05 09:39
	IMG_	4752x3168	Canon EOS 500D		28	2011:05:05 09:40	
	IMG_0085.JPG 4752x3168			Canon EOS 500D 28		28	2011:05:05 09:40
	IMG_0086.JPG 4752x3168			Canon EOS 500D		28	2011:05:05 09:40
	IMG_0087.JPG 4752x3168			Canon EOS 500D		28	2011:05:05 09:40
	IMG_0088.JPG 4752x3168			Canon EOS 500D		28	2011:05:05 09:40
	IMG_0089.JPG 4752x3168			Canon EOS 500D		28	2011:05:05 09:40
	IMG_	0090.JPG	4752x3168	Canon EOS		28	2011:05:05 09:40.
	IMG_0091.JPG 4752x31			Canon EOS 500D 28			2011:05:05 09:40

The Purpose of Calibration

As a result of the calibration we have undistorted images and video

Methods of Calibration

- Laboratory methods:
- 1. Goniometer
- 2. Multicollimator calibrator

Methods of Calibration

Field methods:1. Stellar metohd

Methods of Calibration

 Calibration using 2D/3D calibration objects

- Bundle method
- Adjustment

Camera lens perspective center, the ground point and the corresponding point on the image lies in a straight line (Collinear)

A point is expressed with several coordinate system.

3D points in world coordinate

A point $\mathbf{X}_w = (X_w, Y_w, Z_w)^{\mathsf{T}}$ in a world coordinate.

3D points in camera coordinate

A point $\mathbf{X}_c = (X_c, Y_c, Z_c)^{\mathsf{T}}$ in a camera coordinate.

2D points in image coordinate

A point $\mathbf{x} = (x, y)^{\mathsf{T}}$ in an image plane.

A 3 \times 4 projection matrix ${\bm P}$ denotes relationship between ${\bm X}_w$ and ${\bm x}$ as

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{w},$$
(1)

$$\rightarrow s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}.$$
(2)

A projection matrix can be decomposed into two components, intrinsic and extrinsic parameters, as

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{w} = \mathbf{A} [\mathbf{R}|\mathbf{t}] \mathbf{X}_{w}, \qquad (3)$$

$$\rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_{x} & s & x_{0} \\ 0 & \alpha_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}, \qquad (4)$$

where

- Intrinsic: 3 × 3 calibration matrix A.
- Extrinsic: 3×3 Rotation matrix **R** and 3×1 translation vector **t**.

Denotes transformation between X_w and X_c as

$$\begin{aligned} \mathbf{X}_{c} &= \left[\mathbf{R} | \mathbf{t} \right] \mathbf{X}_{w}, \\ \begin{bmatrix} X_{c} \\ Y_{c} \\ Z_{c} \\ 1 \end{bmatrix} &= \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}. \end{aligned}$$
(6)

Project a 3D point X_c to image plane as

$$\mathbf{x} = \mathbf{A} \left[\mathbf{R} | \mathbf{t} \right] \mathbf{X}_{w} = \mathbf{A} \mathbf{X}_{c}, \tag{7}$$

$$\rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix},$$
(8)

where

- α_x and α_y are focal lengths in pixel unit.
- x₀ and y₀ are image center in pixel unit.
- s is skew parameter.

Project a 3D point X_c to image plane as

$$\mathbf{x} = \mathbf{A} \left[\mathbf{R} | \mathbf{t} \right] \mathbf{X}_{w} = \mathbf{A} \mathbf{X}_{c}, \tag{7}$$

$$\rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix},$$
(8)

where

- α_x and α_y are focal lengths in pixel unit.
- x₀ and y₀ are image center in pixel unit.
- s is skew parameter.

Camera Calibration Parameters

[cx cy] — Optical center (the principal point), in pixels.

(fx, fy) — Focal length in pixels. fx=F/px

fy=F/py

F — Focal length in world units, typically expressed in millimeters.

(px, py) — Size of the pixel in world units.

s — Skew coefficient, which is non-zero if the image axes are not perpendicular. $s=f *tan\alpha$

Camera Calibration Parameters

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential distortion coefficients model this type of distortion.

The distorted points are denoted as (x distorted, y distorted): X distorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]Y distorted = y + [p1 * (r2 + 2 * y2) + 2 * p2 * x * y]

Camera Calibration using 2D Checkboard

- Camera parameters requires at least 5 point pattern
- Intrinsic camera parameters estimation requires at least 3 images at different orientation
- All parameters are defined up to a unknown scale

Supplementary files:

- https://www.youtube.com/watch?v=Ou9Uj75DJX0
- https://www.youtube.com/watch?v=rgeY6FW6-Es
- https://www.youtube.com/watch?v=x6YIwoQBBxA
- Elements of Photogrammetry with Applications in GIS, Fourth Edition. Paul R. Wolf, Bon A. Dewitt, Benjamin E. Wilkinson, 2014 McGraw-Hill Education

Please don't use this presentation without getting a permeation from its original owner

Thanks

Dr.Eng. Hassan Mohamed